Ab Initio Computational Study of Chromate Molecular Anion Adsorption on the Surfaces of Pristine and B- or N-Doped Carbon Nanotubes and Graphene

نویسندگان

  • Yuriy Hizhnyi
  • Sergii Nedilko
  • Viktor Borysiuk
  • Andrii Shyichuk
چکیده

Density functional theory (DFT) computations of the electronic structures of undoped, B- and N-doped CNT(3,3), CNT(5,5) carbon nanotubes, and graphene with adsorbed chromate anions CrO42- were performed within molecular cluster approach. Relaxed geometries, binding energies, charge differences of the adsorbed CrO42- anions, and electronic wave function contour plots were calculated using B3LYP hybrid exchange-correlation functional. Oscillator strengths of electronic transitions of CrO42- anions adsorbed on the surfaces of studied carbon nanostructures were calculated by the TD-DFT method. Calculations reveal covalent bonding between the anion and the adsorbents in all studied adsorption configurations. For all studied types of adsorbent structures, doping with N strengthens chemical bonding with CrO42- anions, providing a ~2-eV increase in binding energies comparatively to adsorption of the anion on undoped adsorbents. Additional electronic transitions of CrO42- anions appear in the orange-green spectral region when the anions are adsorbed on the N-doped low-diameter carbon nanotubes CNT(3,3) and CNT(5,5).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The computational study of adsorption of carbon monoxide on pristine and Ge-doped (6,0) zigzag models of BNNTs

The aim of this research is studying the effects of Ge-doped on CO adsorption on the outer and inner surfaces of (6, 0) zigzag model of boron nitride nanotube (BNNTs) by using DFT theory. For this purpose, eight models of CO adsorption on the surfaces of BNNTs are considered. At first step, all structures were optimized at B3LYP and 6-31G (d) standard base set and then the electronic structure,...

متن کامل

DFT Study of N-hydroxyurea Adsorption Behavior onto Pristine and Iron-doped Single-walled Carbon Nanotube

The interactions between N-hydroxyurea (NHU) as anticancer drug and SWCNTs (pure and Fe-doped) were investigated with density functional theory. In this study, large long-range corrected CAM-B3LYP and B3LYP were employed to investigate the stability of the different NHU-CNT and NHU/Fe-CNT complexes in the gas phase and solution (water). The presence of an iron atom would create suitable space o...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

TiO2/Graphene oxide nanocomposite as an ideal NO gas sensor: A density functional theory study

We performed a density functional theory investigation on the structural and electronic properties of pristine and nitrogen-doped TiO2/Graphene oxide nanocomposites as the adsorbents for the removal of toxic NO molecules in the environment. We presented the most stable adsorption configurations and examined the interaction of NO molecule with these doped and undoped nanocomposites. It turns out...

متن کامل

Amino acids interacting with defected carbon nanotubes: ab initio calculations

The adsorption of a number of amino acids on a defected single-walled carbon nanotube (SWCNT) isinvestigated by using the density-functional theory (DFT) calculations. The adsorption energies andequilibrium distances are calculated for various configurations such as amino acid attaching to defectsites heptagon, pentagon and hexagon in defective tube and also for several molecular orientationswi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017